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Signal Enhancement in a Nonlinear Transfer Characteristic
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We study nonlinear behavior in a model of a periodically modulated, overdamped rf SQUID
operating in the dispersive (i.e.,nonhysteretic) mode. In the presence of correlated noise we fin
an enhancement of the output signal-to-noise ratio (SNR) as a function of the nonlinearity para
of the device. The calculation involves knowledgeonly of the input-output transfer characteristic o
the device. These signal enhancement properties appear to be generic to devices character
nonlinear transfer characteristics. We also use our transfer characteristic approach to explain
experimental results showing SNR enhancement in dc SQUIDs as a function of dc bias current an
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A series of publications in the past six years has explor
the stochastic resonance (SR) phenomenon [1] in an
SQUID loop [2] consisting of a superconducting loop
interrupted by a Josephson junction. SQUIDs are the m
sensitive detectors of magnetic fields, and SR offers
technique whereby their robustness to (external and sens
noise could be substantially increased. All treatments
date, however, apply to thehystereticmode of operation,
corresponding to a multistable potential function.

In multistable SR devices, the lower the barrier betwee
states, the higher the maximum output SNR. What if th
barrier-producing nonlinearity is reduced up to and b
yond the point at which the barrier disappears? Does t
output SNR continue to increase with decreasing nonli
earity, or does it reach a maximum at a critical nonlin
earity strength? To answer this question we consider t
response of anonhystereticSQUID loop to a sinusoidal
magnetic flux embedded in noise. We calculate the outp
SNR at the sinusoid’s frequency via the SQUID transfe
characteristic and find thatthe SNR may be optimized as a
function ofb, the nonlinearity parameter of the device.

In the nonhysteretic SQUID we donot find SR in
the sense of SNR maximization as a function of inpu
noise strength. This stems from our characterization
the SQUID as anondynamical system characterizedonly
by an input-output transfer characteristic; such a sta
characterization is predicated by the extremely small (s
below) time constant of the device. A variant of SR in in
ertial, white-noise-driven, dynamical monostable system
with periodic signals, has been treated in the literature [3
and (for wideband signals) also demonstrated in models
single neurons and neural networks [4,5] with sigmoid
firing rate dependence, as well as in nondynamical syste
without response thresholds [6] wherein the firing “rate
is assumed,a priori, to have a characteristic (Arrhenius
like) form. SR in nondynamicalthresholddetectors has
also been the subject of many recent articles [1,7]. W
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stress, however, that our archetypal system (the SQU
loop) doesnot have a level-crossing threshold, in contras
to the examples cited above; no transition or firing ra
characterization of our system can be made.

In the rf SQUID [8], the magnetic fluxxstd through
the loop evolves according to the equation of motio
tL Ùx  2U 0sxd 1 xe. (We will measure all magnetic
fluxes in dimensionless units of the flux quantumF0 ;
hy2e.) The potential energy functionUsxd 

1
2 x2 2

b

4p2 cos2px involves the nonlinearity parameterb ;
2pLIcyF0, which is calculated from the loop inductance
L and the junction critical currentIc. We apply an ex-
ternal magnetic fluxxestd  xistd 1 x0, wherex0 is a dc
bias flux andxistd ; A cossv0t 1 f0d 1 ystd represents
an input signal consisting of a sine wave (with a ran
dom initial phase) plus noiseystd. The loop inductance
and the normal state junction resistanceR give rise to
a very small time constanttL ; LyR of typically 10210

to 10212 sec, so that the SQUID bandwidtht21
L far ex-

ceeds that of most signals of interest. The noiseystd may
represent intrinsic or extrinsic noise, but in any case i
bandwidth will be limited by the SQUID bandwidth. For
example, the Johnson noise voltage across the junction
sistance, so limited, results in an exponentially correlate
flux noise [8]. To model such noise sources we will us
nonwhite Gaussian noise having mean zero, standard
viation s and dimensionless, normalized correlation coe
ficient Rstd  s22kystdyst 1 tdlt  e2jtjytc , wheretc

is the noise correlation time. Our results, however, do n
rely on the details of the noise correlation since we hav
focused on frequenciesv0 ø t21

c sv0  1, tc  0.01d
where the noise is essentially white.

The SQUID output measured is the “shielding flux
xsstd ; xstd 2 xestd. We obtain the quasistatic input-
output transfer characteristicgsssxistdddd  xsstd by setting
tL Ùx  0 in the equation of motion and solving forxs as a
function of xi . In the nonhysteretic regimes0 # b , 1d
© 1998 The American Physical Society 1381
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a Fourier-Bessel expansion has been obtained forxs [8,9]:

gsxid  xs  lim
n0

max!`

n0
maxX

n01

Mn0sbd sinf2pn0sxi 1 x0dg ;

Mn0 ;
s21dn0

n0p
Jn0sn0bd . (1)

Figure 1 shows one period of the transfer characterist
with x0  1y2 (modifying x0 simply translates the curve
horizontally). Small ripples visible in the right half of the
plot for b  1 (solid curve) show the result of truncating
(1) after 40 terms. We retained 200 terms when generat
the smooth curves in the left half of the plot. The
summation approaches the true transfer characteristic m
quickly for lower b values. Forb  0.5 (dashed curve)
the truncation error with 40 terms is less than10210.

As b is increased from 0 (not shown) to 1, the distanc
Dxi from a minimum of the transfer characteristic to th
next (higherxi) maximumdecreaseslinearly from 0.5 to
0.18. The minima and maxima heights vary linearly with
b and vanish asb ! 0.

We will compute the power spectral density via the se
ond moment of the output,kxsstdxsst 1 tdlt . We will
then calculate the output SNR and display its maximiz
tion for the specific case of the SQUID loop; howeve
the properties we will discuss are generic to systems w
similar transfer characteristics.

We compute the second moment via Rice’s metho
[10,11]. We can apply this technique assuming th
the SQUID is always very close to its steady sta
so that one need only focus on the dynamics of th
sinusoidal signal and noise as they are passed throu
the static nonlinearity given by the transfer characteristi
this implicitly assumes that the signal and noise are bo
characterized by time constants much larger than t
SQUID time constanttL, i.e. v

21
0 , tc ¿ tL.

Applying Stratonovich’s general formula [11] for the
second moment of a zero-memory nonlinear transform
tion of a sine wave plus Gaussian noise, we obtain

FIG. 1. RF SQUID transfer characteristicxs  gsxid for
b  0.5 (dashed) andb  1 (solid). Right half of plot
calculated usingn0

max  40, left half usingn0
max  200. Bias

flux x0  1y2.
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kxsstdxsst 1 tdlt 
X̀
n0

X̀
k0

"
sn

2p

Z `

2`

Z `

2`
gsxide2ixiV dxi

3 JksAVde2s2V2y2Vn dV

#2

3
s21dn1k

n!
ekRnstd cosskv0td , (2)

whereek0 ; 1, ek.0 ; 2.
The one-sided power spectral density (in units ofHz21)

follows by usingS svd  2
R`

2`kxsstdxsst 1 tdlteivt dt:

S svd  2
X̀
n0

X̀
k0

" X̀
n01

Mn0sbdHn1ks2pn0x0d

3 Jks2pn0Ad s2pn0sdne22spn0sd2

#2

3
ek

n!
Gnsvd , (3)

where

Hmsfd ;
Ω

sinsfd, if m even,
cossfd, if m odd, (4)

and

Gnsvd ;

(
pdsv 2 kv0d if n  0 ,

ntc

n21t2
c sv2kv0d2 1

ntc

n21t2
c sv1kv0d2 if n . 0 .

(5)
The spectrum (3) consists ofd functions superimposed

on a smooth noise background. Rapid convergence
the summation overk occurs for k ¿ 2pn0

maxA. The
summation overn will converge quickly if2pn0

maxs ø
1, with slower convergence if this condition is not met.

We begin by considering the case of bias fluxx0 
1y2. Figure 2 shows a sequence of output SNR gain plo
at different input SNR’s. In each plot we fix the input
SNR Rin and vary an input gain parameterg, setting
A  g and s  g

p
1 1 t2

cv2
0y

p
8Rintc [we measure

SNR as (signal power atv0)y(noise power density at
v0 3 1 Hz) ]. Then we plot output SNR gainRgain ;
RoutyRin vs g and b (note thatRgain  Rout 2 Rin if
the SNR’s are expressed in dB). We have introducedg

to emphasize that we are varyingA ands together, thus
keeping the input SNR constant.

The lower left corner of each plot corresponds to
the smallest input signal andb, implying nearly linear
response and, in all cases, an output SNR virtual
identical to the input SNR. The effect of moving out of
the lower left corner to higher signal strengths and highe
b’s depends on the input SNR.

For high input SNR’s, the output SNR rises above
the input SNR as we move away from the lower lef
corner into a region of slightly to moderately nonlinea
response. The input signal spends most of its tim
between approximately6sA 1 sd, and the highest output
SNR’s occur when this deviation fits comfortably within
Dxi , the distance between a minimum of the transfe
characteristic and the next maximum. If this deviation
exceedsDxi, the response becomes highly nonlinear an
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FIG. 2. Output SNR gainRgain (in dB) for various input
SNR’s, plotted vs input gaing (in dB) and nonlinearity
parameterb. Bias flux x0  1y2, n0

max  40. Grayscale:
white is maximum, black is minimum.

the resulting distortion reduces the output SNR belo
the input SNR. For example, at the top of theRin 
71 dB plot, the input signal spends most of its tim
between60.1, and the maximum output SNR occurs
for b ø 0.6, or Dxi  0.31. As g is reduced, a larger
b and, consequently, smallerDxi maximize the output
SNR. Note that as the input SNR becomes very large t
maximum output SNR gain and loss as well as the sha
of the surface appear to converge to fixed values.

In general, any nonadaptive nonlinear filter which ha
a positive SNR gain for high input SNR’s will exhibit a
“threshold effect” such that below a specific input SNR
threshold the nonlinearity will actually result in an SNR
loss. We see this effect in the plots for low input SNR: a
we lower the input SNR, the area of highest output SNR a
proaches the lower left corner where the response is m
nearly linear; greater nonlinearity results in the expecte
SNR loss. (Note that in the two plots with the lowest inpu
SNR we set the highest contour level just below the su
face’s maximum so that the shape of the nearly-flat “she
would be visible—there is very little height difference
between the white region and the lightest gray region.)

Note that both the output signal power and nois
power (as opposed to their ratio) do decrease rapidly w
decreasingb due to the fact that the overall height o
the transfer characteristic is proportional tob. Therefore,
in any physically realizable system one observes
additional rapid decrease in the measured SNR asb ! 0
w

e

he
pe

s

s
p-
ost
d
t
r-

lf”

e
ith
f

an

because the output signal power must compete with t
noise floor of the measurement system. Thus, even
the low input SNR case the useful output SNR shows
maximum at some criticalb . 0.

We now turn to the case of arbitrary bias flux. If
x0 fi 1y2, the input signal will not be centered between
a transfer characteristic minimum and maximum, an
the output SNR may be affected. In fact, the outpu
SNR at the sine wave frequency exhibits a deep troug
for input signals centered on one of the extrema of th
transfer characteristic. Plotted as a function ofx0 andb,
the SNR will exhibit a pattern of spreading troughs a
the locations of the transfer characteristic extrema spre
with decreasingb. (The SNR surface will be even and
periodic inx0 with period one.)

The dc SQUID [8] consists of a superconducting loo
interrupted by two Josephson junctions. Experiments
using a high-b dc SQUID generated transfer character
istics qualitatively similar to those discussed above for th
rf SQUID. However, it is not necessary to use a set of di
ferent dc SQUID’s with differingb’s to study a family of
transfer characteristics. Instead, the transfer characteris
of the dc SQUID may be modified over a family of curves
very similar to those of the rf SQUID by passing various
amounts of dc bias currentIb through the Josephson junc-
tions. Recall thatb depends on the junction critical cur-
rentIc: b ; 2pLIcyF0. The bias current passed through
the junctions can be thought of as effectively changing th
junction critical currents. This results in plots analogou
to those discussed in the preceeding paragraph, but w
Ib taking the role ofb.

For the rf SQUID,Dxi decreases linearly with increas-
ing b. For the dc SQUID, experimental data show a lin
ear increase ofDxi with Ib over the range ofDxi values
possible in the rf SQUIDs0.18 # Dxi # 0.5d. Invert-
ing these relations, we can useDxi as a common scale
for comparing rf SQUID results at variousb’s with dc
SQUID results at variousIb ’s. In Fig. 3 we plot the the-
oretically calculated output SNR obtained from (3) besid
a plot of experimental output SNR data from a high-b dc
SQUID. The theoretical plot reproduces the experimen
tally observed pattern of maxima centered at half-integr
values ofx0 and surrounded by diverging troughs.

In the experiment, the output noise power fell below th
measurement system noise floor forDxi . 0.3. There-
fore we added a fixed noise floor to the calculated
SQUID output noise power as well. Without a noise floor
deep troughs still occur in the theoretical output SNR
but they are narrower. The troughs are thereforenot due
simply to the very small slope near the transfer characte
istic extrema reducing the output signal power relative to
fixed noise floor. Rather, nonlinear response is modifyin
the output signal and noise powers by different amounts

The comblike pattern noticeable along the left edge o
the theoretical plot (corresponding tob’s near 1.0) results
from small oscillations near the transfer characterist
1383
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FIG. 3. Theoretical (left) and experimental (right) output SNR
as a function ofx0 andDxi , with g  0.001, Rin  34 db, and
n0

max  40.

extrema caused by truncating the Bessel function summ
tion atn0  40 (see Fig. 1).

As we have mentioned, for the rf SQUID the larges
possibleDxi is 0.5 (obtained asb ! 0). What happens
in the dc SQUID if we raiseIb beyond the value which
givesDxi  0.5? Interestingly, the transfer characteristi
actually changes shape and develops a new, flat reg
centered between each minimum and the next maximu
This is qualitatively different from an rf SQUID transfer
characteristic. However, such transfer characteristics m
be approximated by, e.g., a piecewise linear function, a
an analytical result for the SNR may still be obtained.

To summarize, an important observation of this Lette
is the b-dependent SNR optimization; recall thatb is a
design parameter that isindependentof the input SNR.
As we cross above theb  1 threshold, we encounter
the hysteretic regime. Here the usual SR behavior h
been well documented [2]; however, there is no longer
optimization with respect tob.

In related work [5] a “stochastic resonance withou
tuning” scenario in a model of a neural network subject
a wideband signal in white noise was considered, with
typical element characterized by its (sigmoidal) firing rat
vs signal amplitude characteristic. The “resonance”
the Fourier transform of the input-output cross-correlatio
function was found to correspond to a critical slope of th
transfer characteristic. The authors characterized regim
wherein the noise-induced firing could benefit from thi
“noise-induced linearization” as well as from SR.

For the class of (nonhysteretic) systems described he
our results demonstrate a particularly efficient means
optimizing the output SNR. Our work shows that th
effects depicted in Figs. 2 and 3 may be generic
nonlinear, nonhysteretic dynamic systems that respo
via transfer characteristics of the type shown in Fig.
1384
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such characteristics are typical products of experimen
on nonlinear devices. No assumptions regarding th
existence of a threshold or ana priori form for a
crossing rate have been made. For the hysteretic ca
the nonlinearity parameter controls the separation of th
stable states as well as the height of the “energy barrie
separating them. In this hysteretic case, the SR literatu
documents that the lower the barrier height, the higher th
SNR of the response to a fixed input sine wave plus nois
Belowthe hysteresis threshold (b  1 for the rf SQUID)
we obtain the above-described maximum in the SNR at
critical value of the nonlinearity parameterb.
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